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A Monte Carlo method for the grand canonical ensemble is described and used to 
study the gas-liquid transition of a 12-6 fluid at a reduced temperature of 1.15. In the 
region of the transition the gaseous and liquid phases are rarely accessible one from 
the other and points were found which lie on the metastable branches of a van der 
Waals loop. Transition parameters and the entropy of the liquid have been calculated 
and the results compared with previous Monte Carlo calculations and with experimental 
data for argon. 

1. INTRODUCTION 

Calculation of the thermodynamic properties of fluids using the Monte Carlo 
(MC) method is well established [l-5] and has led to valuable insights into the 
structure of real fluids. Most calculations of this type have used the canonical 
(N, V, r) ensemble and have shown that the properties of classical, real, monatomic 
fluids are well represented in the high density region by particles interacting with 
a Lennard-Jones (12-6) potential. 

The work described here was carried out in connection with a larger scale MC 
study of fluids in an external potential field and describes the use of a grand 
canonical &, V, T) ensemble to study the gas-liquid transition region of a 12-6 
fluid at reduced temperature T*( =k7’/~) of 1.15. 

This system was previously studied by Hansen and Verlet [6] using the canonical 
ensemble and 864 particles. In their computations the total volume was subdivived 
into a number of smaller volumes and upper and lower bounds were set on the 
number of particles in each subvolume in the MC chain. These bounds were chosen 
so as to obtain satisfactory convergence without modifying the thermodynamic 
properties in the single phase regions. The resulting pressure-volume curve showed 
a van der Waals loop and the Maxwell equal area construction was used to find 
the transition pressure. 

An earlier study of this kind with 32 particles was made by Wood [I] but the 
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results were insufficient to enable the transition pressure to be accurately located 
from a Maxwell construction. 

Unlike the canonical ensemble the isothermal-isobaric (iV, p, T) and grand 
canonical ensembles (p, V, T) in general exhibit only one stable phase for a given 
set of parameters. For any T < T, there is only one value of pressure (in the iso- 
thermal-isobaric ensemble) or p (in the grand canonical ensemble) for which two 
phases can be in equilibrium. 

The isothermal-isobaric ensemble has been employed for a study of 12-6 argon 
in the gas-liquid transition region using 32 particles [7]. At a temperature close to 
the experimental critical temperature and a pressure of 0.9 of the vapour pressure, 
fluctuations between gas phase and liquid phase volumes were observed in the 
MC chain. However, at lower temperatures the phase obtained was strongly 
dependent on the initial configuration and volume to the extent that, in some cases, 
negative pressures were necessary in order to induce a transition to the gas phase 
from an initially liquidlike configuration. 

The majority of calculations using the grand canonical ensemble [S-lo] are more 
suited to particles constrained to move on a lattice than to continuous systems. 
An exception is the work of Norman and Filinov [I l] which appears to have been 
overlooked in the western literature until now and which was brought to light only 
after these calculations were well advanced. A comparison of this work with the 
method described here is made in the discussion section (Sect. 5). 

In Section 2 the equations of the grand canonical ensemble are written in a form 
suitable for the MC importance sampling method. Section 3 describes the sampling 
procedure and the results of the calculations are reported in Section 4. 

2. GENERAL EQUATIONS 

The given parameters in the grand canonical ensemble are temperature T, 
volume V and the set of chemical potentials 

for the s species. 
We wish to calculate the ensemble average (f) of a phase function fn([N]), 

where 
[N] E {r:‘, rt’,..., rj+i , rp’,..., 4: ,..., rj.$} 

is the configuration set corresponding to the composition set 

N = {iVl , iV2 ,..., N8}. 

rp) is the coordinate of particle number i of species (Y and IV, is the number of 
particles of that species. 
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The average (f) is given by [12a]. 

<f) ~ CN=O J' 4Nlf~([W) gd[NI) 

~N=o s dFi1 gd[NI) * 

The weighting function for the grand canonical ensemble is given by 

gdWI) = ZN exP{-&([N]))/N 1, 

zN = fr 22, N! = fiNI!, 
a=1 a-1 

and for monatomic molecules, 

2, = (29~??73/m)-~/~ exp(&), ,!I = l/kT, 

UN[N] is the potential energy of the configuration [N]. 
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v-1) 

(2.2a) 

(2.2b) 

(2.2c) 

We next introduce a maximum composition set M such that the summations 
over N in (2.1) can, with negligible error, be restricted to subsets of M. For a one 
component system M would be the maximum number of particles which could be 
packed into V given a sensible hard core cut off. In the multicomponent case M 
would be the union of the maximum composition sets Mm, 1 d 01 < S. 

We define an occupation set LI(“) for each species (II containing M, elements of 
which N, are unity and the remainder are zero, thus 

.(a) E {# Ply,..., n$} 1, a ' 

n?)=O or 1, z N, = 5 nja). (2.3b) 
i=l 

The integrals of Eq. (2.1) may now be considered as functions of 
n z (I+), 1 < 01 < s} and the maximum configuration set [M]. When n!,“’ is zero 
the integral is independent of the coordinate ry) and the ith particle is designated 
as a “fictitious particle.” The system thus contains N, real particles and M, - N, 
fictitious particles of component CL and the total number of particles (real plus 
fictitious) is a fixed number M, 

The sums and integrals of Eq. (2.1) may now be replaced by sums over all 
occupation sets n and integrals over the configuration set [Ml, e.g., 
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The factor VNa-M~ appears because integration over each fictitious coordinate 
in Eq. (2.1) gives a factor V while the reciprocal of the combinatorial factor in 
Eq. (2.5) is the number of possible occupation sets II for a given composition set N. 

Equations (2.5) and (2.1) give, after some simplification 

cf) = Cn J‘ 4Ml f(n, [MI) 0, [MI) 
IL JWW 4n, [MI) ’ (2.6) 

0, [Ml) = fr (-GVNaW, - NJ! exp(-Ph& PW). 
Or=1 

(2.7) 

Now let the configuration space be divided into a number of equal volume 
elements dx each with configuration x at the centre. Then 

and (6) becomes 

gyo c Ax = j 4M1, (2.8) 

(f> = C f(n, xl 44 XL (2.9) 
n.x 

u(n, x) = h(n, x)/z h(n, x). (2.10) 

Equation (9) is the form of (f) required for MC sampling. 

3. MONTE CARLO SAMPLING 

3.1, General Method 

The sum over states given by Eq. (2.9) is sampled by a Mark& chain y(t); 
t = 1, 2,..., J1/‘ where y 3 (n, x}. A state in the Markov chain is generated from 
the previous one in the usual way using the probability u(u) defined by Eq. (2.10). 
Thus a trial state y’ is accepted as the next state if u( v’) 3 u(v); when u($) < u( JJ) 
the next state is y’ (or JJ) dependent on whether u(y’)/u(y) is 26 (or <.$) a random 
number distributed uniformly in the range 0 to 1. 

When the state y’ is chosen in the neighbourhood of y in such a way as to satisfy 
ergodic requirements [l] then the averageTover the Markov chain converges to (f), 

f = -g 5 fW>>, J&f = <f>. (3.1) 
t=1 
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For the one component system investigated here the trial state for the particle i 
with coordinate ri = (xi , yi , zi) and occupation number IZ* is generated cyclically 
as 

xi' = xi + (2f, - 1) 6 etc. 

ni ‘- - ni ; 54 < 1/z (3.2) 
ni’ = 1 - n, ; 54 > 1/z 

where 6 is a step lenth parameter and fj’s are random numbers uniformly distri- 
buted in the range 0 to 1. 

The next state can be generated in one of four possible ways depending on the 
values of ni and & : 

(i) ni = 0, t4 < l/2. A fictitious particle is moved, the next state is always y’. 

(ii) ni = 1, .$., < l/2. A real particle is moved, the MC test is the same as 
that for the canonical ensemble. 

(iii) ni = 0, 5, > l/2. A fictitious particle is both moved and changed to a 
real particle. Here, 

~Y’MY> = ZVexp(--P d W/W - W 

(iv) ni = 1, & > l/2. A real particle is moved and changed to a fictitious 
particle. Here, 

u(y’)/u(y) = (M - N + 1) exp(+ fl U)/ZV. 

In the cases (ii), (iii), and (iv) the change in the total potential energy is the same 
as that for the ith particle and is stored in a table of pairwise interactions, Only the 
nonzero energies of the real particles need to be stored and this is done by indexing 
each particle with a “store pointer,” Pi . Pi is zero for fictitious particles and has a 
unique integer value in the range 0 < Pi < N, , (N, > N) for each real particle. 
Here N, is an upper limit whose value is discussed below. The pairwise interactions 
between real particles are then stored in N,(N, - 1)/2 locations indexed by Pi in an 
upper triangular array. When a new particle (i) is created its pairwise interactions 
with the other real particles are calculated. If the trial is successful Pi is given a 
nonzero value which is used as an index for inserting the new interactions into the 
pair-interaction array. When a particle (j) is destroyed Pi is set equal to zero and 
its previous value becomes available for a future successful creation trial. 

A trap incorporated in each creation trial ensures that N < N, . When this 
condition is violated the programme is halted, the Pi and ri before the trial are 
stored and the programme restarted with a larger value of N, . This procedure 
ensures that the minimum amount of store is used for a calculation. 
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Calculations were coded in Fortran for the University of London CDC 6600 
computer and approximately 10,000 steps per minute could be generated at the 
liquid densities used in this work. 

3.2. The Transition Region 

General considerations [12b] show that for calculations based on the grand 
canonical ensemble the probability P(N) of observing N particles in the system is 
bimodal in the region of a phase transition; the area under each peak being propor- 
tional to the number of systems in the corresponding phase in a representative 
ensemble. As the size of the system increases the range of activity (temperature 
and volume being constant) over which the two peaks have comparable areas 
decreases. The locus of the maxima in P(N) is associated with those metastable 
regions of the van der Waals loop, in the corresponding canonical ensemble, where 
the gradient of the pressure p versus density p curve is positive. The unstable region 
(@lap < 0) of the van der Waals loop is associated with the minimum of P(N). 

If one of the maxima in P(N) is inaccessible from a state corresponding to the 
other maximum then thep - p curve calculated from the grand canonical ensemble 
will include the metastable regions of the loop but will not include the unstable 
region. In the next section we show that this is the case with the MC sampling 
method described above. In the liquid-vapour transition region the two peaks in 
P(N) are relatively inaccessible from each other. 

4. RESULTS FOR 12-6 ARGON 

In the Lennard-Jones pair potential 

dr> = 44(4rP - (4rY1, (4.1) 

the parameters E and u were those appropriate for Ar (e/k = 119.8K, 
o = 0.3405 nm) and were used as units of energy and length, respectively; the 
mass of the argon atom was 6.690 x lO-2s kg. The pair potential was cut off at 
a value of r equal to half the length L of the cubic periodic cell and the minimum 
image method [I] was used to calculate the total potential energy and pair-virials. 
Corrections to the potential energy for the long range interaction (r > L/2) were 
calculated by integration over a uniform particle density [13]. The maximum 
number of particles M was 864 and L was chosen so that 864 spheres of diameter 0.8 
could be packed into the cell in a fee array. 

No systematic study of the effect of step length or convergence has been made, 
but test calculations indicate that convergence is not very sensitive to small changes 
in the step length. The acceptance of trial states of type (i) is unaffected by step 
length and at equilibrium the number of accepted trial states of type (iii) and (iv) 
are equal As the step length is increased the overall acceptance of trial states 
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drops and the rates of accepted trial states of type (ii) to type (iv) decreases. A 
step length of A.06 was used which led to about 50 % and 45 % acceptance of all 
trial states and trial states of type (ii) plus type (iv), respectively. The ratio of 
accepted trial states of type (ii) to type (iv) was about 8. 

The number of real particles (N), energy (U) and pressure (p) were calculated 
by averaging N, U,([N]) and the pair-virial 

over the MC chain after discarding at least the first 400,000 states (except where 
otherwise stated). The results are shown in Table I for T* = 1.15 and values of the 
activity 2 spanning the gas-liquid transition. Entropies have been calculated 
using the thermodynamic relation 

TS = 1.5kT + (U) -p(N) + (p) V, 

all the quantities on the right hand side being givenparameters orcalculated averages 
for each run. 

TABLE 1 

Results of MC runs at T* = 1.15. The reduced activity Z and reduced pressure (p) are in units 
of l/us and e/as respectively. The column headed states gives the total length of the MC chain 

and the number of states used to calculate the averages 

Run Initial States/41,472 
number Z/lO-2 Condition Total Average <P>.102 <WI09 SI<N% 

1 4.203 Liquid N = 182 
2 4.413 Liquid N = 182 

3A 4.623 Gas N = 39 
3B 4.623 Liquid N = 190 
3C 4.623 Random N = 86 
3D 4.623 Liquid N = 181 
4 4.833 Random N = 86 

5A 4.938 Gas N = 39 

5l3 4.938 Liquid N = 189 
5C 4.938 Liquid N = 199 
6 5.043 Gas N= 39 
7 5.254 Liquid N = 199 

44 
60 

50 
71 
54 
72 
75 

86 

74 
70 
72 
70 

22 22.5 
18(a) 175 
28(b) 25.2 
40 29.4 
41 181 
28 28.4 
41 183 
28(c) 33.8 
33(d) 185 
14(e) 36.8 
42(f) 186 
64 187 
60 185 
58 190 
39 196 

5.85 
-4.89 

6.48 
6.82 
0.202 
- 
4.15 
7.06 

-0.017 
7.18 
5.86 
4.59 
6.00 
7.33 

13.3 

0.628 
3.89 
0.688 
0.820 
4.01 
0.809 
4.04 
0.944 
4.07 
1.01 
4.10 
4.12 
4.07 
4.17 
4.32 

12.88 
9.22 

12.27 
12.05 
9.15 
- 
9.18 

12.33 
9.05 

12.23 
9.09 
9.05 
9.12 
9.02 
8.93 

Averages are taken over the partial sums numbered (a) 11-28, (b) 33-60, (c) 13-40, (d) 43-75, 
(e) 5-18, (f) 45-86. 
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The number of real particles and nature of the initial conditions for each run 
are indicated in Table I. “Liquid” and “Gas” refer to a corresponding initial state 
with a fluidlike configuration of real particles. “Random” means that the initial 
condition was a fee array of real and fictitious particles with 1 ‘A of real particles, 
chosen at random, and the remainder fictitious. The sampling errors, estimated 
from the partial averages taken every 41,472 states were of the order of 0.7 % 
and 1.4 % for (N) and (U), respectively, at liquid densities and 2 % and 6 % at the 
gas densities. The sampling error on (p) was of the order 0.025 and 0.004 at the 
liquid and gas densities. 

The runs numbered 2, 4, and 5A each showed two sections. The initial condition 
and first section (partial sums 11-28) of run 2 correspond to liquid densities and 
the second section (partial sums 33-60) to a gas density. The runs 4 and 5A had the 
initial conditions “Random” and “Gas,” respectively, and the first sections corre- 
spond to gas densities followed by a jump to liquid 
convergence. The runs 5B and 5C, at the same activity 
“Liquid” initial conditions showed only one section. 

densities after apparent 
as run 5A, with different 

:: 
P . 

FIG. 1. The Monte Carlo run 4. <N>, is the pth partial average, containing 41,472 states, 
of the number of real particles. 

The partial averages and averaged histograms of the number of real particles 
for run 4 are shown in Figs. 1 and 2. The averaged histograms of the number of 
real particles is an estimate of the probability P(N) and it can be seen from Fig. 2 
that for each section of the run P(N) has, apart from statistical fluctuation, only 
one maximum. 
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FIG. 2. Histogram of the number of real particles in the Monte Carlo run 4. The peak at 
low (high) N is from the partial averages numbers 13-40 (43-75) of the Monte Carlo chain. 

The runs 3A and 3B start from the initial conditions “Gas” and “Liquid,” 
respectively, and have the same value of the activity. They converge to 
corresponding gas and liquid phases and no jumps between the phases were 
observed. The additional runs 3C and 30 at the same activity with initial conditions 
“Random” and “Liquid” of length 54 and 72 partial sums converge to gas and 
liquid phases, respectively, and did not show any jumps between phases. 

Liquid configurations at activities below that of run 2 or gas configurations at 
activities higher than run 5A could not be maintained. 

Figures 3 and 4 show plots of the pressure and activity against density, respectiv- 
ely. The region in which the MC points indicate that the density is two valued 
correspond to the metastable regions of the van der Waals loop. Also shown are 
curves fitted to the points in the van der Waals loop calculated for the restricted 
canonical ensemble by Hansen and Verlet [6]. 

Figure 5 shows a plot of pressure versus activity for values taken from Table 1 
for the gas and liquid branches of the pressure-density curve. The gas-liquid 
transition activity obtained from the intersection in Fig. 5 is 5.O3.1O-2. Despite the 
scatter of the points on the liquid branch the transition can be estimated to within 
k.001 and since the gas branch pressures are more precise than those on the liquid 
branch the transition pressure can be estimated to within &.005, which is approxi- 
mately five times smaller than the sampling errors of the liquid branch pressures. 

The pressure, density and latent heat 9 for the transition are compared with 
experimental values for Ar [14] and the values calculated by Hansen and Verlet [6] 



410 ROWLEY, NICHOLSON AND PARSONAGE 
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L O’.lO oh d.30 oh 0.50 0.60 
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FIG. 3. Pressure versus density at T* = 1.15. The bars on the points represent the estimated 
sampling errors. The solid curve is the van der Waals loop of the restricted canonical ensemble 
Fl. 

6- 

5- 

-0 4- 

;;i 

3- 

l- 

‘-1,-T;- 
RHO 

FIG. 4. Activity versus density at T* = 1.15. The solid curve is the van der Waals loop of the 
restricted canonical ensemble [6]. 

in Table II. The entropy of the liquid at the transition point is shown in Table II 
together with the experimental value [15]. The magnitude of the corresponding 
configurational part of the free energy is 18 % below the value calculated by 
Hansen and Verlet by integration of the equation of state for the restricted 
canonical ensemble. 
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FIG. 5. Pressure versus activity at T* = 1.15. The squares (circles) correspond to the gas 
(liquid) phase. The bars on the points represent the estimated sampling errors. 

TABLE II 

Liquid-gas transition data at T* = 1.15.p, p9 and 2 are the transition pressure, 
gas density, liquid density and latent heat of evaporation in reduced units. 

S, is the entropy of the liquid at the transition point. 

p.102 PO PL 9 S,INK 

This work 

Restricted Canonical 
Ensemble [6] 

Experimental Values 
for Ar [14, 151. 

1.29 0.124 0.605 3.56 9.04 

5.91 0.073 0.606 4.34 - 

6.64 0.093 0.579 3.73 9.42 

5. DISCUSSION 

The grand canonical MC method described in this work when applied to the 
gas-liquid transition region for 12-6 argon yields points corresponding to the 
metastable regions of the van der Waals loop; the liquid phase being virtually 
inaccessible from the gas phase and vice versa. For example, in run 4 one jump 
was observed in the 3 x lo6 states of the MC chain. There are two possible causes 
for this infrequency of jumps between phases. 
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(i) The range of activities in which the two peaks of P(N) have comparable 
areas may be very narrow for the size of system considered. 

(ii) The MC sampling method may be inadequate for sampling both phases. 
The second factor may apply in this work because the number of real particles 
in the system is only changed by one at a time. Thus to get from a liquid phase to 
a gas phase state even when the areas of the two peaks in P(N) are comparable, 
the system has to pass through states with very low values of P(N). An ideal sampling 
method would give frequent jumps between the two phases when the areas of the 
two peaks in P(N) were comparable or would unambiguously, regardless of initial 
conditon converge on one phase. 

Two methods were investigated in an attempt to overcome these difficulties. 
In the first the number of particles created or destroyed in a single step was greatly 
increased. In the second two Markov chains, corresponding to gas and liquid, 
respectively, were run in parallel in such a way that one chain represented the actual 
system at each step and jumps between the chains were determined by importance 
sampling. Neither of these methods was successful in giving the frequent jumps 
between the phases required for a good estimate of a bimodal P(N) or in unam- 
biguously converging on one phase. 

Despite these limitations in the grand canonical MC method the transition 
pressure is easily obtained from the metastable regions by equating the pressure 
calculated from the virial and the activities of the gas and liquid at the transition 
point. The value of transition pressure obtained is 10 % above the value for 
experimental argon at T* = 1.15. The corresponding latent heat of evaporation 
and entropy of the liquid are 5 ‘A and 4 % below the experimental value. This 
agreement with experimental argon is satisfactory and in keeping with the 
agreement between real and 12-6 argon previously observed in the single-phase 
region [2, 161. 

An important feature of the method described here is that the recreation of 
particles becomes easier the lower the density because the probability of 
unfavourable interactions is reduced, and this is similar in effect to increasing the 
step length. Adequate sampling of the gas configuration space is therefore possible. 
The results confirm that the method can be operated at both gas and liquid densities 
without changing the step length. Norman and Filinov, using 30-40 particles 
at T* = I .O, found results [l I] similar to those reported here but did not note any 
metastable regions of the van der Waals loop and did not calculate pressures from 
the pair-virial. Their method differs from the present one in by-passing the use of 
fictitious coordinates by choosing as the state parameters an ordered set of 
coordinates for the particles in the system. Details of the sampling procedure, which 
is a hybrid of the symmetric and asymmetric methods [l], are given in the original 
paper. Test calculations with their method have shown that metastable states do 
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occur for the size of system used in this work and that these results have about the 
same estimated sampling error per unit of computing time as the present work but 
that the storage requirement is lower. 

The metastable states found in the (N, p, T) ensemble Monte Carlo calculation 
[7] at T* = 1.0 may be attributed to the metastable regions of the van der Waals 
loop in a similar fashion to this work, with the probability P(V) of observing the 
value 1/ taking the place of P(N). However since the unstable region of the 
van der Waals loop can never be realized from an (N, p, T) calculation [12b] a 
Maxwell equal area construction can not be made to determine the transition 
pressure. At T* = 1.24 jumps between the two phases for the (N, p, T) calculation 
are more frequent than in the present work (about once every 6.104 states). This 
may be due either to the higher temperature and smaller system used (32 particles) 
in the (N,p, T) work or to an inherent superiority for sampling both phases. 
At T* = 1.24 this method showed repeated jumps between the phases when the 
pressure was 10% below the experimental value. 

The results of Hansen and Verlet for the restricted canonical ensemble at 
T* = 1.15 predict a transition pressure -10 % below the experimental value and 
19 % below the value reported here. The latent heat of evaporation is 22 % above 
the grand canonical ensemble value. Restrictions of the density fluctuations in the 
canonical ensemble would be expected to favour the liquidlike phase over the gas 
phase in the two phase region and may account for this discrepancy. 

A possible source of error in our method lies in the small average number of 
particles sampled for the gas phase, which may create finite system effects. That 
this is unlikely to be the case is strongly supported by the z - p plot (Fig. 4) which 
shows good agreement on the gas density side with the results of Hansen and 
Verlet, but poor agreement on the liquid density side. 

The cell size will also be important close to the transition point. When the cell 
is small there may be a significant correlation between particles in adjacent 
cells and a consequential modification of the transition parameters might be 
expected. 

The MC grand canonical method offers several advantages over the canonical 
and (IV, p, T) ensembles in the transition region. Further investigation of MC 
chains showing jumps between the gas and liquid phases and the effect of cell 
size would be desirable and the study of systems close to the critical point may 
even be possible with this method. 
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